3,682 research outputs found

    Affect of brane thickness on microscopic tidal-charged black holes

    Full text link
    We study the phenomenological implications stemming from the dependence of the tidal charge on the brane thickness LL for the evaporation and decay of microscopic black holes. In general, the larger LL, the longer are the black hole life-times and the greater their maximum mass for those cases in which the black hole can grow. In particular, we again find that tidal-charged black holes might live long enough to escape the detectors and even the gravitational field of the Earth, thus resulting in large amounts of missing energy. However, under no circumstances could TeV-scale black holes grow enough to enter the regime of Bondi accretion.Comment: 6 pages, 2 figures, Clarification of tidal charge expression. Additional justification of constraint

    Generating perfect fluid spheres in general relativity

    Full text link
    Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star -- a static spherically symmetric blob of fluid with position-independent density -- the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.Comment: 18 pages, 4 tables, 4 figure

    The Proton Distribution Function in Weakly Magnetized Turbulent Plasmas

    Get PDF
    We calculate the proton distribution function due to heating by subsonic (Alfvenic) turbulence in a weakly magnetized collisionless plasma. The distribution function is nonthermal. For non-relativistic energies, it is an exponential of the magnitude of the proton velocity. For ultra-relativistic energies, it can be characterized as a power law with a momentum-dependent slope.Comment: 7 pages, submitted to Ap

    Buchdahl-like transformations for perfect fluid spheres

    Full text link
    In two previous articles [Phys. Rev. D71 (2005) 124307 (gr-qc/0503007), and gr-qc/0607001] we have discussed several "algorithmic" techniques that permit one (in a purely mechanical way) to generate large classes of general relativistic static perfect fluid spheres. Working in Schwarzschild curvature coordinates, we used these algorithmic ideas to prove several "solution-generating theorems" of varying levels of complexity. In the present article we consider the situation in other coordinate systems: In particular, in general diagonal coordinates we shall generalize our previous theorems, in isotropic coordinates we shall encounter a variant of the so-called "Buchdahl transformation", while in other coordinate systems (such as Gaussian polar coordinates, Synge isothermal coordinates, and Buchdahl coordinates) we shall find a number of more complex "Buchdahl-like transformations" and "solution-generating theorems" that may be used to investigate and classify the general relativistic static perfect fluid sphere. Finally by returning to general diagonal coordinates and making a suitable ansatz for the functional form of the metric components we place the Buchdahl transformation in its most general possible setting.Comment: 23 page

    On a common misunderstanding of the Birkhoff theorem and light deflection calculation: generalized Shapiro delay and its possible laboratory test

    Full text link
    In Newtonian gravity (NG) it is known that the gravitational field anywhere inside a spherically symmetric distribution of mass is determined only by the enclosed mass. This is also widely believed to be true in general relativity (GR), and the Birkhoff theorem is often invoked to support this analogy between NG and GR. Here we show that such an understanding of the Birkhoff theorem is incorrect and leads to erroneous calculations of light deflection and delay time through matter. The correct metric, matching continuously to the location of an external observer, is determined both by the enclosed mass and mass distribution outside. The effect of the outside mass is to make the interior clock run slower, i.e., a slower speed of light for external observer. We also discuss the relations and differences between NG and GR, in light of the results we obtained in this Lettework. Finally we discuss the Generalized Shapiro delay, caused by the outside mass, and its possible laboratory test.Comment: 12 pages, 4 figures, invited talk in the 2nd Galileo-Xu Guangqi Meeing, Italy, 2011, IJMPD in pres

    Region of the anomalous compression under Bondi-Hoyle accretion

    Full text link
    We investigate the properties of an axisymmetric non-magnetized gas flow without angular momentum on a small compact object, in particular, on a Schwarzschild black hole in the supersonic region near the object; the velocity of the object itself is assumed to be low compared to the speed of sound at infinity. First of all, we see that the streamlines intersect (i.e., a caustic forms) on the symmetry axis at a certain distance rxr_x from the center on the front side if the pressure gradient is neglected. The characteristic radial size of the region, in which the streamlines emerging from the sonic surface at an angle no larger than θ0\theta_0 to the axis intersect, is Δr=rxθ02/3.\Delta r= r_x\theta^2_0/3. To refine the flow structure in this region, we numerically compute the system in the adiabatic approximation without ignoring the pressure. We estimate the parameters of the inferred region with anomalously high matter temperature and density accompanied by anomalously high energy release.Comment: 10 pages, 2 figure

    A Solution to the Protostellar Accretion Problem

    Full text link
    Accretion rates of order 10^-8 M_\odot/yr are observed in young protostars of approximately a solar mass with evidence of circumstellar disks. The accretion rate is significantly lower for protostars of smaller mass, approximately proportional to the second power of the stellar mass, \dot{M}_accr\propto M^2. The traditional view is that the observed accretion is the consequence of the angular momentum transport in isolated protostellar disks, controlled by disk turbulence or self--gravity. However, these processes are not well understood and the observed protostellar accretion, a fundamental aspect of star formation, remains an unsolved problem. In this letter we propose the protostellar accretion rate is controlled by accretion from the large scale gas distribution in the parent cloud, not by the isolated disk evolution. Describing this process as Bondi--Hoyle accretion, we obtain accretion rates comparable to the observed ones. We also reproduce the observed dependence of the accretion rate on the protostellar mass. These results are based on realistic values of the ambient gas density and velocity, as inferred from numerical simulations of star formation in self--gravitating turbulent clouds.Comment: 4 pages, 2 figures, ApJ Letters, in pres

    Laudatores Temporis Acti, or Why Cosmology is Alive and Well - A Reply to Disney

    Full text link
    A recent criticism of cosmological methodology and achievements by Disney (2000) is assessed. Some historical and epistemological fallacies in the said article have been highlighted. It is shown that---both empirically and epistemologically---modern cosmology lies on sounder foundations than it is portrayed. A brief historical account demonstrates that this form of unsatisfaction with cosmology has had a long tradition, and rather meagre results in the course of the XX century.Comment: 11 pages, no figures; a criticism of astro-ph/0009020; Gen. Rel. Grav., accepted for publicatio

    Algorithmic construction of static perfect fluid spheres

    Full text link
    Perfect fluid spheres, both Newtonian and relativistic, have attracted considerable attention as the first step in developing realistic stellar models (or models for fluid planets). Whereas there have been some early hints on how one might find general solutions to the perfect fluid constraint in the absence of a specific equation of state, explicit and fully general solutions of the perfect fluid constraint have only very recently been developed. In this article we present a version of Lake's algorithm [Phys. Rev. D 67 (2003) 104015; gr-qc/0209104] wherein: (1) we re-cast the algorithm in terms of variables with a clear physical meaning -- the average density and the locally measured acceleration due to gravity, (2) we present explicit and fully general formulae for the mass profile and pressure profile, and (3) we present an explicit closed-form expression for the central pressure. Furthermore we can then use the formalism to easily understand the pattern of inter-relationships among many of the previously known exact solutions, and generate several new exact solutions.Comment: Uses revtex4. V2: Minor clarifications, plus an additional section on how to turn the algorithm into a solution generalization technique. This version accepted for publication in Physical Review D. Now 7 page

    Spherical Accretion

    Get PDF
    We compare different examples of spherical accretion onto a gravitating mass. Limiting cases include the accretion of a collisionally dominated fluid and the accretion of collisionless particles. We derive expressions for the accretion rate and density profile for semi-collisional accretion which bridges the gap between these limiting cases. Particle crossing of the Hill sphere during the formation of the outer planets is likely to have taken place in the semi-collisional regime.Comment: ApJ Letters, 3 page
    corecore